Cardiogenic Shock


DRG Category: 292

Mean LOS: 4.3 days

Description MEDICAL: Heart Failure and Shock With CC

Classification Section

Nursing Type Primary: critical care

Nursing Type Secondary: acute care

System Primary: cardiovascular

System Secondary: multisystem


Cardiogenic shock occurs when cardiac output is insufficient to meet the metabolic demands of the body, resulting in inadequate tissue perfusion. It is a medical and nursing emergency. There are four stages of cardiogenic shock: initial, compensatory, progressive, and refractory.

During the initial stage, there is diminished cardiac output without any clinical symptoms. In the compensatory stage, the baroreceptors respond to the decreased cardiac output by stimulating the sympathetic nervous system to release catecholamines to improve myocardial contractility and vasoconstriction, leading to increased venous return and arterial blood pressure. Impaired renal perfusion activates the renin-angiotensin system, whose end product, angiotensin II, causes sodium and water retention as well as vasoconstriction. The progressive stage follows the compensatory stage if there is no intervention or if the intervention fails to reverse the inadequate tissue perfusion. Compensatory mechanisms, aimed at improving cardiac output and tissue perfusion, place an increased demand on an already compromised myocardium. As tissue perfusion remains inadequate, the cells begin anaerobic metabolism, leading to metabolic acidosis and fluid leakage out of the capillaries and into the interstitial spaces. A decrease in circulating volume and an increase in blood viscosity may cause clotting in the capillaries and tissue death.

As the body releases fibrinolytic agents to break down the clots, disseminated intravascular coagulation (DIC) may ensue. Lactic acidosis causes depression of the myocardium and a decrease in the vascular responsiveness to catecholamines, further reducing cardiac output. Blood pools and stagnates in the capillaries, and the continued increase in hydrostatic pressure causes fluid to leak into the interstitium. Severe cerebral ischemia causes depression of the vasomotor center and loss of sympathetic stimulation, resulting in blood pooling in the periphery, a decrease in preload, and further reduction in cardiac output. If there is no effective intervention at this point, the shock will progress to the refractory stage, when the chance of survival is extremely limited. Most experts acknowledge that cardiogenic shock is often unresponsive to treatment and has a mortality rate ranging from 20% to 50% if prompt medical intervention occurs. Complications include cardiopulmonary arrest, dysrhythmias, organ failure, stroke, and death.


The most common cause of cardiogenic shock is acute myocardial infarction (MI) resulting in a loss of more than 40% of the functional myocardium. Cardiogenic shock occurs with 8% to 10% of all hospital admissions for acute MI. Other causes include papillary muscle rupture, left ventricular free wall rupture, acute ventricular septal defect, severe congestive heart failure, end-stage cardiomyopathy, severe valvular dysfunction, acute cardiac tamponade, cardiac contusion, massive pulmonary embolus, or overdose of drugs such as beta blockers or calcium channel blockers.

Genetic Considerations

While several genetic factors may contribute to susceptibility to cardiogenic shock, no direct genetic link has been documented. Tumor necrosis factor (TNF)-alpha variants have been associated with severe heart failure. Polymorphisms in several genes may be predictors of survival: TNF-alpha, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-beta, and interferon (IFN)-gamma cytokine. Individuals who carry the TNF-2 allele appear to have better outcomes than those with other variants of this gene.

Gender, Ancestry, and Life Span Considerations

Cardiogenic shock can occur at any age but is more common in the middle-aged and older adult. Anyone at risk for coronary artery disease, either male or female, is also at risk for cardiogenic shock as a result of an acute MI. The elderly are at greater risk because of their diminished ability to compensate for an inadequate cardiac output and tissue perfusion; elderly people have the highest mortality rate (55% for people over 75 years). While the overall incidence of cardiogenic shock is higher in men than in women, the percentage of female patients with MI who develop cardiogenic shock is higher than that of male patients with MI. Ethnicity and race have no known effect on the risk of cardiogenic shock.

Global Health Considerations

European countries have a prevalence of cardiogenic shock similar to that of the United States. For unknown reasons, Asian/Pacific islanders have a higher incidence of cardiogenic shock than do other groups. No data are available for developing nations.



Cardiogenic shock often occurs after a patient has been admitted to the hospital following an acute MI. The patient is likely to have a history of symptoms of an acute MI, including crushing, viselike chest pain or heaviness that radiates to the arms, neck, or jaw; lasts more than 20 minutes; and is unrelieved by nitroglycerin and rest. Other MI symptoms include shortness of breath, nausea, vomiting, sweating, anxiety, and a sense of impending doom. The patient may also have a history of symptoms of any of the other etiologies mentioned above.

Physical Examination

Most common symptoms are hypotension in the absence of hypovolemia as well as oliguria, cyanosis, cool extremities, and reduced mental status. During the initial stage of shock, there are no clinical findings unless the cardiac output can be measured. When the patient has entered the compensatory stage, symptoms may include an altered level of consciousness; sinus tachycardia; the presence of an S3 or S4 gallop rhythm; jugular venous distention; hypotension; rapid, deep respirations; pulmonary crackles; venous oxygen saturation (SvO2) less than 60%; cyanosis; urine output less than 20 mL/hour; decreased urinary sodium; increased urinary osmolarity; peripheral edema; hyperglycemia; hypernatremia; cold, clammy skin; and decreased bowel sounds.

As the patient enters the progressive stage, the symptoms become more pronounced and resistant to treatment. The patient becomes mentally unresponsive; hypotension becomes worse, requiring high doses of positive inotropic agents; metabolic and respiratory acidosis become apparent; oliguria or anuria and anasarca may ensue; and symptoms of DIC may be present. His or her skin may appear mottled, cyanotic, and ashen with faint peripheral pulses and cold extremities. When the shock reaches the refractory stage, multisystem organ failure is apparent, with the above symptoms unresponsive to treatment.


The patient in cardiogenic shock is in a life-threatening situation. The chances for survival are reduced, and the patient may experience a sense of impending doom. The impaired tissue perfusion may lead to anxiety and fear. The patient and his or her family or significant other may be in crisis. Both the patient and the family may be experiencing grief in response to the potential loss of life.

Diagnostic Highlights

TestNormal ResultAbnormality With ConditionExplanation
Hemodynamic monitoringRight atrial pressure (RAP): 1–8 mm Hg; pulmonary artery occlusion pressure (PAOP): 4–12 mm Hg; cardiac output (CO): 4–7 L/min; cardiac index (CI): 2.5–4 L/min/m2; systemic vascular resistance (SVR): 800–1,200 dynes/sec per cm-5RAP: 6 mm Hg; PAOP: > 18 mm Hg; CO: < 5 L/min; CI: < 2.2 L/min/m2; SVR: >1,200 dynes/sec per cm-5Elevated filling pressures in heart and low systolic blood pressure occur in the setting of low cardiac output; arterial constriction occurs as a compensatory mechanism. Hemodynamic monitoring with serial measures of cardiac output is important in the diagnosis of cardiogenic shock.

Other Tests: Compete blood count, serum chemistry tests, electrocardiogram, echocardiogram, coronary angiography, cardiac enzymes, lactate levels, troponins, arterial blood gases, brain natriuretic peptide, urinalysis, and coagulation studies

Primary Nursing Diagnosis

Diagnosis: Decreased cardiac output related to inadequate cardiac contractility as evidenced by hypotension, oliguria, cyanosis, and/or decreased mental status

Outcomes: Circulation status; Cardiac pump effectiveness; Tissue perfusion: Cardiopulmonary, Cerebral, Renal, Peripheral; Vital sign status

Interventions: Circulatory care; Emergency care; Vital signs monitoring; Cardiac care; Cardiac precautions; Oxygen therapy; Fluid/electrolyte management; Fluid monitoring; Shock management: Volume, Medication administration, Resuscitation, Surveillance

Planning Implementation


The SHOCK trial (Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock) in 1999 demonstrated that either percutaneous coronary intervention (PCI) within 90 minutes of presentation or coronary artery bypass is the treatment of choice for cardiogenic shock. While both procedures decreased mortality rates at 1 year, they did not reduce 30-day mortality. The primary goal in treating cardiogenic shock is improvement in tissue perfusion and oxygenation. These goals generally are accomplished by coronary reperfusion by medications and interventional cardiology, and revascularization is accomplished by coronary artery bypass graft surgery. To limit the infarct size and treat the dyspnea, pulmonary congestion, hypoxemia, and acidosis, the physician is likely to prescribe oxygen, intubation, and mechanical ventilation. Further trials are now in progress to determine the role of coronary artery stents, intra-aortic balloon pulsation, and the timing of coronary artery bypass grafting.

Vasoactive medications to support blood pressure and cardiac output are necessary to maintain tissue perfusion. Although the patient needs an adequate blood pressure, afterload may also need to be decreased, which may be accomplished with an intra-aortic balloon pump (IABP). A left ventricular assist device (LVAD) may be used to replace the function of the patient's heart for several days to provide total rest for the heart. An LVAD diverts blood from the left atrium or left ventricle by means of a pressure gradient and moves it to the external pump, after which the blood is returned to the aorta during diastole. An LVAD can reduce the patient's right ventricular contraction. Monitor the patient's central venous pressure carefully. Note that the SHOCK trial results and current American Heart Association scientific guidelines point to rapid reperfusion followed by coronary artery bypass grafting for patients when indicated.

Pharmacologic Highlights:

General Comments: Improving cardiac output, which is necessary to improve tissue perfusion, can be accomplished in several ways. If the patient is able to maintain hemodynamic stability, the physician prescribes medications, namely diuretics and nitrates, to reduce preload. Generally, the patient may be too hypotensive to tolerate the vasodilative effects of both diuretics and nitrates. The patient needs improvement in myocardial contractility without adding significant workload on the heart. Dopamine may also be used in an attempt to improve contractility and cardiac output. Other vasoactive drugs, such as inamrinone, may also be used to increase contractility. Vasopressors may be used in an attempt to increase the mean arterial blood pressure to a level that provides adequate tissue perfusion (> 70 mm Hg). Several agents that may be administered include dopamine, epinephrine, norepinephrine, and phenylephrine hydrochloride.

Medication or Drug ClassDosageDescriptionRationale
Dobutamine if the systolic blood pressure is >80 mm Hg (dopamine is the drug of choice for hypotensive patients)2–40 mcg/kg/min (but usually in the range of 2–20 mcg/kg/min); milrinone may be added if patients are not responding or are developing tachycardia in response to dobutamineSympathomimeticDobutamine improves heart contractility without much effect on heart rate; renal function may also improve through increased cardiac output and renal perfusion
NitroglycerineBegin at 5 mcg/min and increase by 5 mcg/min every 3–5 minVasodilatorRelax vascular smooth muscle and reduce systemic vascular resistance, thereby increasing cardiac output
DiureticsVaries by drugLoop diuretics, (preload) diureticsReduces venous return


Limiting myocardial oxygen consumption is a primary concern. Decreasing oxygen demand may limit ischemia, injury, and infarction. Restrict the patient's activity and maintain the patient on bedrest. Address the patient's anxiety by explaining all procedures. Permit the family or significant others to remain with the patient as long as their presence does not cause added stress. Maintaining a calm and peaceful environment provides reassurance and reduces anxiety, which in turn reduces myocardial oxygen consumption. Serial vital signs, ongoing communication with the critical care team, and careful oversight of vasoactive medications are core nursing responsibilities.

Restricted activity could lead to impaired skin integrity, necessitating frequent assessment and care of the skin. Adequate protein and calories are essential for the prevention or healing of impaired skin integrity and should be provided by oral, enteral, or parenteral means.

Evidence Based Practice Health Policy

van Diepen, S., Katz, J., Albert, N., Henry, T., Jacobs, A., Kapur, N., . . . Cohen. M. (2017). Contemporary management of cardiogenic shock: A scientific statement from the American Heart Association. Circulation, 136(16), e232–e268.

  • The authors define cardiogenic shock as a low-cardiac-output state resulting in life-threatening end-organ hypoperfusion and hypoxia with an in-hospital mortality rate of 27% to 51%. The most frequent cause is acute MI with left ventricular dysfunction. The authors recommend a framework based on best practices that can be applied to regional and national networks.
  • The authors recommend coronary reperfusion and revascularization for people with acute MI admitted with cardiogenic shock. Fibrinolytic therapy (tissue plasminogen activator or streptokinase) may be administered if there is a delay to early invasive therapy with cardiac catheterization, percutaneous coronary interventions, or coronary bypass grafting. The role of percutaneous coronary interventions with stenting remains controversial. Vasoactive medications such as dopamine, norepinephrine, epinephrine, phenylephrine, and vasopressin are recommended to increase contractility and maintain blood pressure.

Documentation Guidelines

  • Physical findings: Cardiopulmonary, renal, neurological, and integumentary systems; skin integrity
  • Hemodynamic response to inotropic medications, diuretics, nitrates, IABP, and oxygen
  • Presence of complications: Pulmonary congestion, respiratory distress, unrelieved chest pain, and skin breakdown
  • Reaction to the crisis and prognosis

Discharge and Home Healthcare Guidelines

Teach the patient how to reduce controllable risk factors for heart disease. If the physician has referred the patient to a cardiac rehabilitation program, encourage attendance. Be sure the patient understands the medication prescribed.

RECURRENCE OF CHEST PAIN. Teach the patient to call 911 for any chest pain that is not relieved by rest and/or nitroglycerin. Instruct the patient not to ignore the pain or wait to call for assistance.

RECURRENCE OF HEART FAILURE. Teach the patient to restrict fluids to 2 to 2.5 L per day or as prescribed by the physician and to observe sodium restrictions. The patient should report a weight gain of greater than 4 pounds in 2 days to the physician. Finally, teach the patient to monitor for increasing shortness of breath and edema and to report either of those signs or symptoms to the physician. If the patient experiences acute shortness of breath, she or he should call 911 or go to the emergency department immediately.

Cardiogenic Shock is a sample topic from the Diseases and Disorders.

To view other topics, please or purchase a subscription.

Nursing Central is the award-winning, complete mobile solution for nurses and students. Look up information on diseases, tests, and procedures; then consult the database with 5,000+ drugs or refer to 65,000+ dictionary terms. Learn more.


* When formatting your citation, note that all book, journal, and database titles should be italicized* Article titles in AMA citation format should be in sentence-case
TY - ELEC T1 - Cardiogenic Shock ID - 73546 A1 - Sommers,Marilyn Sawyer, BT - Diseases and Disorders UR - PB - F.A. Davis Company ET - 6 DB - Nursing Central DP - Unbound Medicine ER -